AP CALCULUS PROBLEM SET 0 FUNCTIONS/RELATIONS (NON-CALCULATOR)

(June 92)

1. A rectangle with length three times its width is inscribed in the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.
Find the area of the rectangle.
(75-1)
2. Given the function f defined by $f(x)=\ln \left(x^{2}-9\right)$.
(a) Describe the symmetry of the graph of f.
(b) Find the domain of f.
(c) Find all values of x such that $f(x)=0$.
(d) Write a formula for $f^{-1}(x)$, the inverse function of f, for $x>3$
(Jan 94)
3. A cubic function contains the points $(-2,-6)$ and $(-4,-10)$ and has a double root at $x=-3$. Determine the equation, in factored form, of the function.
(Jan 94)
4. From a lighthouse, the range of visibility is 20 km . On a coordinate system where $(0,0)$ represents the lighthouse, a ship is traveling on a path represented by $y=-2 x+30$. The ship can first be seen from the lighthouse at point A , and leaves the range of visibility at point B .
(a) Determine the coordinates of A and B
(b) If the ship is moving at a constant speed of 12 knots, determine the amount of time the ship is visible from the lighthouse. (1 knot is $1.852 \mathrm{~km} / \mathrm{h}$)
(Jun 94)
5. Solve: $\left(\log _{2} x\right)^{2}-2 \log _{2} x-8=0$
(77-1)
6. Let $f(x)=\cos x$ for $0 \leq x \leq 2 \pi$ and let $g(x)=\ln x$ for all $x>0$.

Let S be the composition of g with f, that is, $S(x)=g(f(x))$.
(a) Find the domain of S.
(b) Find the range of S.
(c) Find the zeros of S.
(Jun 86)
7. Solve, $0 \leq \theta \leq 2 \pi$: $\cot \theta \tan 2 \theta=3$
(Jun 86)
8. Solve: $x^{3}-8 x+3=0$
(Jan 87)
9. Give the equation of an asymptote of the hyperbola $x^{2}-4 y^{2}-10 x+24 y-27=0$.

