AP CALCULUS PROBLEM SET 11 INTEGRATION III (FUNDAMENTAL THEOREM of CALCULUS)

(2009-6)
1.

Graph of f^{\prime}
The derivative of a function f is defined by $f^{\prime}(x)=\left\{\begin{array}{lll}g(x) & \text { for }-4 \leq x \leq 0 \\ 5 e^{-x / 3}-3 & \text { for } 0<x \leq 4\end{array}\right.$.
The graph of the continuous function $f^{\prime}(x)$, shown in the figure above, has x-intercepts at $x=-2$ and $x=3 \ln \left(\frac{5}{3}\right)$. The graph of g on $-4 \leq x \leq 0$ consists of a semi-circle, and $f(0)=5$.
(a) For $-4<x<4$, find all values of x at which the graph of f has a point of inflection. Justify your answer.
(b) Find $f(-4)$ and $f(4)$.
(c) For $-4 \leq x \leq 4$, find the value of x at which f has an absolute maximum. Justify your answer.
(2010-5)
2.

The function g is defined and differentiable on the closed interval $[-7,5]$ and satisfies $g(0)=5$. The graph of $y=g^{\prime}(x)$, the derivative of g, consists of a semi-circle and three line segments as shown on the figure above.
(a) Find $g(3)$ and $g(-2)$.
(b) Find the x-coordinate of each point of inflection of the graph of $y=g(x)$ on the interval $-7<x<5$. Explain your reasoning.
(c) The function h is defined by $h(x)=g(x)-\frac{1}{2} x^{2}$. Find the x-coordinate of each critical point of h, where $-7<x<5$, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.
3.

x	0	$0<x<1$	1	$1<x<2$	2	$2<x<3$	3	$3<x<4$
$f(x)$	-1	Negative	0	Positive	2	Positive	0	Negative
$f^{\prime}(x)$	4	Positive	0	Positive	DNE	Negative	-3	Negative
$f^{\prime \prime}(x)$	-2	Negative	0	Positive	DNE	Negative	0	Positive

Let f be a function that is continuous on the interval $[0,4)$. The function f is twice differential except at $x=2$. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at $x=2$.
(a) For $0<x<4$, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.
(b) On the axes provided, sketch the graph of a function that has all the characteristics of f.
(c) Let g be the function defined by $g(x)=\int_{1}^{x} f(t) d t$ on the open interval (0,4). For $0<x<4$, find all values of x at which g has a relative extremum. Determine whether g has relative maximum or a relative minimum at each of these values. Justify your answer.
(d) For the function defined in part (c), find all values of x, for $0<x<4$, at which the graph of g has a point of inflection. Justify your answer.
(2004-5)
4.

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x)=\int_{-3}^{x} f(t) d t$
(a) Find $g(0)$ and $g^{\prime}(0)$.
(b) Find all values of x in the open interval $(-5,4)$ at which g attains a relative maximum. Justify your answer.
(c) Find the absolute minimum value of g on the closed interval $[-5,4]$. Justify your answer.
(d) Find all values of x in the open interval $(-5,4)$. At which the graph of g has a point of inflection.
5.

Let f be a function defined on the closed interval $-3 \leq x \leq 4$ with $f(0)=3$. The graph of f^{\prime}, the derivative of f, consists of one line segment and a semicircle as shown.
(a) On what intervals, if any, is f increasing? Justify your answer.
(b) Find the x-coordinate of each point of inflection of the graph of f on the open interval $-3<x<4$. Justify your answer.
(c) Find an equation for the line tangent to the graph of f at the point $(0,3)$
(d) Find $f(-3)$ and $f(4)$. Show the work that leads to your answers
(2011(B)-6)
6.

Graph of g
Let g be the piecewise linear function defined on $[-2 \pi, 4 \pi]$ whose graph is given above, and let $f(x)=g(x)-\cos \left(\frac{x}{2}\right)$
(a) Find $\int_{-2 \pi}^{4 \pi} f(x) d x$. Show the computations that lead to your answer.
(b) Find all x-values in the open interval $(-2 \pi, 4 \pi)$ for which f has a critical point.
(c) Let $h(x)=\int_{0}^{3 x} g(t) d t$. Find $h^{\prime}\left(-\frac{\pi}{3}\right)$.

OPTIONAL

(2006-3)
7.

The graph of the function f shown above consists of six line segments.
Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
(a) Find $g(4), g^{\prime}(4), g^{\prime \prime}(4)$.
(b) Does g have a relative minimum, a relative maximum, or neither at $x=1$? Justify your answer.
(c) Suppose f is defined for all real numbers and is periodic with a period of length 5 . The graph above shows two periods of f. Given that $g(5)=2$, find $g(10)$ and write an equation of the line tangent to the graph of g at $x=108$.
(2002-4)
8.

The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$
(a) Find $g(1), g^{\prime}(1), g^{\prime \prime}(1)$.
(b) For what values of x in the open interval $(-2,2)$ is g increasing? Explain your reasoning.
(c) For what values of x in the open interval $(-2,2)$ is the graph of g concave down? Explain your reasoning.
(d) On the axes provided, sketch the graph of g on the closed interval $[-2,2]$
9.
(a) Given $5 x^{3}+40=\int_{c}^{x} f(t) d t$.
(i) Find $f(x)$
(ii) Find the value of c.
(b) If $F(x)=\int_{x}^{3} \sqrt{1+t^{16}} d t$, find $F^{\prime}(x)$.
(95BC-6)
10. Let f be a function whose domain is the closed interval $[0,5]$.

The graph of f is shown. Let $h(x)=\int_{0}^{\frac{x}{2}+3} f(t) d t$.
(a) Find the domain of h.
(b) Find $h^{\prime}(2)$.
(c) At what x is $h(x)$ a minimum?

Show the analysis that leads to your conclusion.

(2014-5)
11.

x	-2	$-2<x<-1$	-1	$-1<x<1$	1	$1<x<3$	3
$f(x)$	12	Positive	8	Positive	2	Positive	7
$f^{\prime}(x)$	-5	Negative	0	Negative	0	Positive	$\frac{1}{2}$
$g(x)$	-1	Negative	0	Positive	3	Positive	1
$g^{\prime}(x)$	2	Positive	$\frac{3}{2}$	Positive	0	Negative	-2

The twice-differentiable functions f and g are defined for all real numbers x. Values of f, f^{\prime}, g, and g^{\prime} for various values of x are given in the table above.
(a) Find the x-coordinate of each relative minimum of f on the interval $[-2,3]$. Justify your answers.
(b) Explain why there must be a value c, for $-1<c<1$, such that $f^{\prime \prime}(c)=0$.
(c) The function h is defined by $h(x)=\ln f(x)$. Find $h^{\prime}(3)$. Show the computations that lead to your answer.
(d) Evaluate $\int_{-2}^{3} f^{\prime}(g(x)) g^{\prime}(x) d x$.

