(93-5)
1.

The figure above shows the graph of f^{\prime}, the derivative of f. The domain of f is the set of all x such that $0<x<2$.
(a) Write an expression for $f^{\prime}(x)$ in terms of x.
(b) Given that $f(1)=0$, write an expression for $f(x)$ in terms of x.
(b) Sketch the graph of $y=f(x)$.
(74-4)
2. Let f be a function defined for all $x>-5$, and having the following properties.
(i) $f^{\prime \prime}(x)=\frac{1}{3 \sqrt{x+5}}$ for all x in the domain of f.
(ii) The line tangent to the graph of f at $(4,2)$ has an angle of inclination of 45°.

Find an expression for $f(x)$.
(88-6)
3. Let f be a differentiable function, defined for all real numbers x, with the following properties:
(i) $f^{\prime}(x)=a x^{2}+b x$
(ii) $f^{\prime}(1)=6$ and $f^{\prime \prime}(1)=18$
(iii) $\int_{1}^{2} f(x) d x=18$

Find $f(x)$. Show your work.
(89-BC1)
4. Let f be a function such that $f^{\prime \prime}(x)=6 x+8$.
(a) Find $f(x)$ if the graph of f is tangent to the line $3 x-2$ at the point $(0,-2)$.
(b) Find the average value of $f(x)$ on the closed interval $[-1,1]$.
(2011(B)-4)
5. Consider a differentiable function f having domain all positive real numbers, and for which it is known that $f^{\prime}(x)=(4-x) x^{-3}$ for $x>0$.
(a) Find the x-coordinate of the critical point of f. Determine whether the point is a relative maximum, a relative minimum, or neither for the function f. Justify your answer.
(b) Find all intervals on which the graph of f is concave down. Justify your answer.
(c) Given that $f(1)=2$, determine the function f.
(2003-6)
6. Let f be the function defined by $f(x)= \begin{cases}\sqrt{x+1} & \text { for } 0 \leq x \leq 3 \\ 5-x & \text { for } 3<x \leq 5\end{cases}$
(a) Is f continuous at $x=3$? Explain why or why not.
(b) Find the average value of $f(x)$ on the closed interval $0 \leq x \leq 5$.
(c) Suppose the function g is defined by $g(x)=\left\{\begin{array}{l}k \sqrt{x+1} \text { for } 0 \leq x \leq 3 \\ m x+2 \text { for } 3<x \leq 5,\end{array}\right.$ where k and m are constants. If g is differentiable at $x=3$, what are the values of k and m ?
(1990BC-6)
7. Let f and g be differentiable functions with the following properties:
(i) $g(x)=A-f(x)$ where A is a constant
(ii) $\int_{1}^{2} f(x) d x=\int_{2}^{3} g(x) d x$
(iii) $\int_{2}^{3} f(x) d x=-3 A$
(a) Find $\int_{1}^{3} f(x) d x$ in terms of A.
(b) Find the average value of $g(x)$ in terms of A, over the interval $[1,3]$.
(c) Find the value of k if $\int_{0}^{1} f(x+1) d x=k A$.

