Chapter 2

Practice Exercises

Part A. Directions: Answer these questions without using your calculator. 1. $\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 4}$ is (A) 1 (B) 0 (C) $-\frac{1}{2}$ (D) -1 (E) ∞ 2. $\lim_{x \to \infty} \frac{4 - x^2}{x^2 - 1}$ is (A) 1 (B) 0 (C) -4 (D) -1 (E) ∞ 3. $\lim_{x \to 3} \frac{x-3}{x^2-2x-3}$ is (A) 0 (B) 1 (C) $\frac{1}{4}$ (D) ∞ (E) none of these 4. $\lim_{x\to 0} \frac{x}{x}$ is (A) 1 (B) 0 (C) ∞ (D) -1 (E) nonexistent 5. $\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}$ is (A) 4 (B) 0 (C) 1 (D) 3 (E) ∞ 6. $\lim_{x \to \infty} \frac{4 - x^2}{4x^2 - x - 2}$ is (A) -2 (B) $-\frac{1}{4}$ (C) 1 (D) 2 (E) nonexistent 7. $\lim_{x \to -\infty} \frac{5x^3 + 27}{20x^2 + 10x + 9}$ is (A) $-\infty$ (B) -1 (C) 0 (D) 3 (E) ∞ 8. $\lim_{x \to \infty} \frac{3x^2 + 27}{x^3 - 27}$ is (A) 3 (B) ∞ (C) 1 (D) -1 (E) 0 9. $\lim_{x\to\infty}\frac{2^{-x}}{2^x}$ is (A) -1 (B) 1 (C) 0 (D) ∞ (E) none of these 10. $\lim_{x \to \infty} \frac{2^{-x}}{2^x}$ is (A) -1 (B) 1 (C) 0 (D) ∞ (E) none of these

11. $\lim_{x\to 0} \frac{\sin 5x}{x}$ (A) = 0 (B) = $\frac{1}{5}$ (C) = 1 (D) = 5 (E) does not exist 12. $\lim_{x \to 0} \frac{\sin 2x}{3x}$ (B) $=\frac{2}{3}$ (C) =1 (D) $=\frac{3}{2}$ (E) does not exist (A) = 013. The graph of $y = \arctan x$ has (A) vertical asymptotes at x = 0 and $x = \pi$ (B) horizontal asymptotes at $y = \pm \frac{\pi}{2}$ (C) horizontal asymptotes at y = 0 and $y = \pi$ (D) vertical asymptotes at $x = \pm \frac{\pi}{2}$ (E) none of these 14. The graph of $y = \frac{x^2 - 9}{3x - 9}$ has (A) a vertical asymptote at x = 3(B) a horizontal asymptote at $y = \frac{1}{3}$ (C) a removable discontinuity at x = 3(D) an infinite discontinuity at x = 3(E) none of these 15. $\lim_{x \to 0} \frac{\sin x}{x^2 + 3x}$ is (A) 1 (B) $\frac{1}{3}$ (C) 3 (D) ∞ (E) $\frac{1}{4}$ 16. $\lim_{x \to 0} \sin \frac{1}{x}$ is (A) ∞ (C) nonexistent **(D)** -1 **(B)** 1 (E) none of these Which statement is true about the curve $y = \frac{2x^2 + 4}{2 + 7x - 4x^2}$? 17. The line $x = -\frac{1}{4}$ is a vertical asymptote. **(A)** The line x = 1 is a vertical asymptote. **(B)** The line $y = -\frac{1}{4}$ is a horizontal asymptote. **(C)** The graph has no vertical or horizontal asymptote. **(D)** The line y = 2 is a horizontal asymptote. **(E)** 18. $\lim_{x\to\infty} \frac{2x^2+1}{(2-x)(2+x)}$ is (A) –4 **(B)** −2 (C) 1 **(D)** 2 (E) nonexistent

.

19. $\lim_{x\to 0} \frac{|x|}{x}$ is (A) 0 (B) nonexistent (C) 1 (D) -1 (E) none of these 20. $\lim x \sin \frac{1}{x}$ is (A) 0 (B) ∞ (C) nonexistent (D) -1 **(E)** 1 21. $\lim_{x \to \pi} \frac{\sin(\pi - x)}{\pi - x}$ is (A) 1 (B) 0 (C) ∞ (D) nonexistent (E) none of these 22. Let $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x \neq 1 \\ 4 & \text{if } x = 1. \end{cases}$ Which of the following statements is (are) true? I. $\lim_{x \to 1} f(x)$ exists II. f(1) exists III. f is continuous at x = 1(**B**) II only (C) I and II (A) I only (D) none of them (E) all of them 23. If $\begin{cases} f(x) = \frac{x^2 - x}{2x} & \text{for } x \neq 0, \\ f(0) = k, & \text{for } x \neq 0, \end{cases}$ and if f is continuous at x = 0, then k =(A) -1 (B) $-\frac{1}{2}$ (C) 0 (D) $\frac{1}{2}$ (E) 1 24. Suppose $\begin{cases} f(x) = \frac{3x(x-1)}{x^2 - 3x + 2} & \text{for } x \neq 1, 2, \\ f(1) = -3, \\ f(2) = 4. \end{cases}$ Then f(x) is continuous (B) except at x = 2 (C) except at x = 1 or 2 (A) except at x = 1(D) except at x = 0, 1, or 2 (E) at each real number 25. The graph of $f(x) = \frac{4}{x^2 - 1}$ has (A) one vertical asymptote, at x = 1

- (B) the y-axis as vertical asymptote
- (C) the x-axis as horizontal asymptote and $x = \pm 1$ as vertical asymptotes
- (D) two vertical asymptotes, at $x = \pm 1$, but no horizontal asymptote
- (E) no asymptote

26. The graph of $y = \frac{2x^2 + 2x + 3}{4x^2 - 4x}$ has

- (A) a horizontal asymptote at $y = +\frac{1}{2}$ but no vertical asymptote
- (B) no horizontal asymptote but two vertical asymptotes, at x = 0 and x = 1
- (C) a horizontal asymptote at $y = \frac{1}{2}$ and two vertical asymptotes, at x = 0 and x = 1
- (D) a horizontal asymptote at x = 2 but no vertical asymptote
- (E) a horizontal asymptote at $y = \frac{1}{2}$ and two vertical asymptotes, at $x = \pm 1$

27. Let
$$f(x) = \begin{cases} \frac{x^2 + x}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$$
.

Which of the following statements is (are) true?

I. f(0) exists

II.
$$\lim_{x\to 0} f(x)$$
 exists

- III. f is continuous at x = 0
- (A) I only (B) II only (C) I and II only
- (D) all of them (E) none of them

Part B. Directions: Some of the following questions require the use of a graphing calculator.

28. If [x] is the greatest integer not greater than x, then $\lim_{x \to 1/2} [x]$ is

(A) $\frac{1}{2}$ (B) 1 (C) nonexistent (D) 0 (E) none of these

29. (With the same notation) $\lim_{x \to \infty} [x]$ is

(A) -3 (B) -2 (C) -1 (D) 0 (E) none of these

- **30.** $\limsup x$
 - (A) is -1
 (B) is infinity
 (C) oscillates between -1 and 1
 (D) is zero
 (E) does not exist
- **31.** The function $f(x) = \begin{cases} x^2/x & (x \neq 0) \\ 0 & (x = 0) \end{cases}$
 - (A) is continuous everywhere
 - (B) is continuous except at x = 0
 - (C) has a removable discontinuity at x = 0
 - (D) has an infinite discontinuity at x = 0
 - (E) has x = 0 as a vertical asymptote

Questions 32-36 are based on the function f shown in the graph and defined below:

32. $\lim_{x\to 2} f(x)$

- (A) equals 0 (B) equals 1 (C) equals 2
- (D) does not exist (E) none of these

33. The function f is defined on [-1,3]

(A)	if <i>x</i> ≠ 0	(B)	if $x \neq 1$	(C)	if $x \neq 2$
(D)	if $x \neq 3$	(E)	at each x in	[-1,3]	

34. The function f has a removable discontinuity at

(A) x = 0 (B) x = 1 (C) x = 2 (D) x = 3 (E) none of these

35. On which of the following intervals is f continuous?

(A) $-1 \le x \le 0$ (B) 0 < x < 1 (C) $1 \le x \le 2$ (D) $2 \le x \le 3$ (E) none of these

- **36.** The function f has a jump discontinuity at
 - (A) x = -1 (B) x = 1 (C) x = 2(D) x = 3 (E) none of these

CHALLENGE 37. $\lim_{x \to 0} \sqrt{3 + \arctan \frac{1}{x}}$ is (A) $-\infty$ (B) $\sqrt{3 - \frac{\pi}{2}}$ (C) $\sqrt{3 + \frac{\pi}{2}}$ (D) ∞ (E) none of these

- **38.** Suppose $\lim_{x \to -3^{-}} f(x) = -1$, $\lim_{x \to -3^{-}} f(x) = -1$, and f(-3) is not defined. Which of the following statements is (are) true?
 - I. $\lim_{x \to -3} f(x) = -1$.
 - II. f is continuous everywhere except at x = -3.
 - III. *f* has a removable discontinuity at x = -3.
 - (A) None of them (B) I only (C) III only
 - (D) I and III only (E) All of them

39. If
$$y = \frac{1}{2 + 10^{\frac{1}{x}}}$$
, then $\lim_{x \to 0} y$ is
(A) 0 (B) $\frac{1}{12}$ (C) $\frac{1}{2}$ (D) $\frac{1}{3}$ (E)

CHALLENGE

nonexistent

- 40. For what value(s) of a is it true that $\lim_{x \to a} f(x)$ exists and f(a) exists, but $\lim_{x \to a} f(x) \neq f(a)$? It is possible that a =
 - (A) -1 only (B) 1 only (C) 2 only (D) -1 or 1 only (E) -1 or 2 only

41. $\lim_{x \to a} f(x)$ does not exist for a =

- (A) -1 only (B) 1 only (C) 2 only (D) 1 and 2 only (E) -1, 1, and 2
- 42. Which statements about limits at x = 1 are true?
 - I. $\lim_{x \to \infty} f(x)$ exists.
 - II. $\lim_{x \to 1} f(x)$ exists.
 - III. $\lim_{x \to \infty} f(x)$ exists.
 - (A) none of I, II, or III
 (B) I only
 (C) II only
 (D) I and II only
 (E) I, II, and III

Answer Key

.

.

1.	В	12.	В	23.	В	34.	С
2.	D	13.	В	24.	В	35.	В
3.	С	14.	С	25.	С	36.	В
4.	Α	15.	В	26.	С	37.	Ε
5.	D	16.	С	27.	D	38.	D
6.	В	17.	Α	28.	D	39.	Ε
7.	Α	18.	В	29.	Ε	40.	Α
8.	Ε	19.	В	30.	Ε	41.	В
9.	С	20.	Ε	31.	Α	42.	D
10.	D	21.	Α	32.	Α		
11.	D	22.	С	33.	Ε		

į

Answers Explained

- 1. (B) The limit as $x \to 2$ is $0 \div 8$.
- 2. (D) Use the Rational Function Theorem (page 96). The degrees of P(x) and Q(x) are the same.
- 3. (C) Remove the common factor x 3 from numerator and denominator.
- 4. (A) The fraction equals 1 for all nonzero x.
- 5. (D) Note that $\frac{x^3-8}{x^2-4} = \frac{(x-2)(x^2+2x+4)}{(x-2)(x+2)}$.
- 6. (B) Use the Rational Function Theorem.
- 7. (A) Use the Rational Function Theorem.
- 8. (E) Use the Rational Function Theorem.
- 9. (C) The fraction is equivalent to $\frac{1}{2^{2x}}$; the denominator approaches ∞ .
- **10.** (D) Since $\frac{2^{-x}}{2^x} = 2^{-2x}$, therefore, as $x \to -\infty$, the fraction $\to +\infty$.
- 11. (D) $\lim_{x \to 0} \frac{\sin 5x}{x} = \lim_{x \to 0} \frac{\sin 5x}{x} \cdot \frac{5}{5} = 5 \lim_{x \to 0} \frac{\sin 5x}{5x} = 5$
- **12.** (B) $\lim_{x \to 0} \frac{\sin 2x}{3x} = \frac{1}{3} \lim_{x \to 0} \frac{\sin 2x}{x} \cdot \frac{2}{2} = \frac{2}{3} \lim_{x \to 0} \frac{\sin 2x}{2x} = \frac{2}{3}$
- 13. (B) Because the graph of $y = \tan x$ has vertical asymptotes at $x = \pm \frac{\pi}{2}$, the graph

of the inverse function $y = \arctan x$ has horizontal asymptotes at $y = \pm \frac{\pi}{2}$.

14. (C) Since
$$\frac{x^2-9}{3x-9} = \frac{(x-3)(x+3)}{3(x-3)} = \frac{x+3}{3}$$
 (provided $x \neq 3$), y can be defined to be equal to 2 at $x = 3$, removing the discontinuity at that point.

15. (B) Note that
$$\frac{\sin x}{x^2 + 3x} = \frac{\sin x}{x(x+3)} = \frac{\sin x}{x} \cdot \frac{1}{x+3} \to 1 \cdot \frac{1}{3}$$
.

- 16. (C) As $x \to 0$, $\frac{1}{x}$ takes on varying finite values as it increases. Since the sine function repeats, $\sin \frac{1}{x}$ oscillates, taking on, infinitely many times, each value between -1 and 1. The calculator graph of $Y_1 = \sin(1/X)$ exhibits this oscillating discontinuity at x = 0.
- 17. (A) Note that, since $y = \frac{2x^2 + 4}{(2 x)(1 + 4x)}$, both x = 2 and $x = -\frac{1}{4}$ are vertical asymptotes. Also, $y = -\frac{1}{2}$ is a horizontal asymptote.

18. (B)
$$\frac{2x^2+1}{(2-x)(2+x)} = \frac{2x^2+1}{4-x^2}$$
. Use the Rational Function Theorem (page 96).

19. (B) Since |x| = x if x > 0 but equals -x if x < 0, $\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1$ while $\lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = -1$.

20. (E) Note that
$$x \sin \frac{1}{x}$$
 can be rewritten as $\frac{\sin \frac{1}{x}}{\frac{1}{x}}$ and that, as $x \to \infty$, $\frac{1}{x} \to 0$.

21. (A) As $x \to \pi$, $(\pi - x) \to 0$.

22. (C) Since
$$f(x) = x + 1$$
 if $x \neq 1$, $\lim_{x \to 1} f(x)$ exists (and is equal to 2).

23. (B)
$$f(x) = \frac{x(x-1)}{2x} = \frac{x-1}{2}$$
, for all $x \neq 0$. For f to be continuous at $x = 0$, $\lim_{x \to 0} f(x)$
must equal $f(0)$. $\lim_{x \to 0} f(x) = -\frac{1}{2}$.

24. (B) Only
$$x = 1$$
 and $x = 2$ need be checked. Since $f(x) = \frac{3x}{x-2}$ for $x \neq 1, 2$, and

$$\lim_{x \to 1} f(x) = -3 = f(1), f \text{ is continuous at } x = 1. \text{ Since } \lim_{x \to 2} f(x) \text{ does not exist,}$$
 $f \text{ is not continuous at } x = 2.$

- 25. (C) As $x \to \pm \infty$, $y = f(x) \to 0$, so the x-axis is a horizontal asymptote. Also, as $x \to \pm 1, y \to \infty$, so $x = \pm 1$ are vertical asymptotes.
- 26. (C) As $x \to \infty$, $y \to \frac{1}{2}$; the denominator (but not the numerator) of y equals 0 at x = 0 and at x = 1.

27. (D) The function is defined at 0 to be 1, which is also
$$\lim_{x \to 0} \frac{x^2 + x}{x} = \lim_{x \to 0} (x+1)$$

- **28.** (**D**) See Figure N2-1 on page 88.
- **29.** (E) Note, from Figure N2-1, that $\lim_{x \to 2^-} [x] = -3$ but $\lim_{x \to 2^+} [x] = -2$.
- 30. (E) As $x \to \infty$, the function sin x oscillates between -1 and 1; hence the limit does not exist.
- 31. (A) Note that $\frac{x^2}{x} = x$ if $x \neq 0$ and that $\lim_{x \to 0} f = 0$.

32. (A)
$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^+} f(x) = 0.$$

/

- 33. (E) Verify that f is defined at x = 0, 1, 2, and 3 (as well as at all other points in [-1,3]).
- 34. (C) Note that $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^+} f(x) = 0$. However, f(2) = 1. Redefining f(2) as 0 removes the discontinuity.
- **35.** (B) The function is not continuous at x = 0, 1, or 2.
- **36.** (B) $\lim_{x \to 1^-} f(x) = 0 \neq \lim_{x \to 1^+} f(x) = 1.$

37. (E) As
$$x \to 0^-$$
, $\arctan \frac{1}{x} \to -\frac{\pi}{2}$, so $y \to \sqrt{3 - \frac{\pi}{2}}$. As $x \to 0^+$, $y \to \sqrt{3 + \frac{\pi}{2}}$.
The graph has a jump discontinuity at $x = 0$. (Verify with a calculator.)

38. (D) No information is given about the domain of f except in the neighborhood of x = -3.

39. (E) As
$$x \to 0^+$$
, $10^{\frac{1}{x}} \to \infty$ and therefore $y \to 0$. As $x \to 0^-$, $\frac{1}{x} \to -\infty$, so $10^{\frac{1}{x}} \to 0$ and therefore $y \to \frac{1}{2}$. Because the two one-sided limits are not equal, the limit does not exist. (Verify with a calculator.)

- 40. (A) $\lim_{x \to -1} f(x) = 1$, but f(-1) = 2. The limit does not exist at a = 1 and f(2) does not exist.
- **41.** (B) $\lim_{x \to -1} f(x) = 1$ and $\lim_{x \to 2} f(x) = 2$.
- 42. (D) $\lim_{x \to 1^-} f(x) = -1$ and $\lim_{x \to 1^+} f(x) = 1$, but since these two limits are not the same, $\lim_{x \to 1} f(x)$ does not exist.