Practice Exercises

Part A. Directions: Answer these questions without using your calculator.

1. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}+4}$ is
(A) 1
(B) 0
(C) $-\frac{1}{2}$
(D) - 1
(E) ∞
2. $\lim _{x \rightarrow \infty} \frac{4-x^{2}}{x^{2}-1}$ is
(A) 1
(B) 0
(C) -4
(D) -1
(E) ∞
3. $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-2 x-3}$ is
(A) 0
(B) 1
(C) $\frac{1}{4}$
(D) ∞
(E) none of these
4. $\lim _{x \rightarrow 0} \frac{x}{x}$ is
(A) 1
(B) 0
(C) ∞
(D) -1
(E) nonexistent
5. $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}$ is
(A) 4
(B) 0
(C) 1
(D) 3
(E) ∞
6. $\lim _{x \rightarrow \infty} \frac{4-x^{2}}{4 x^{2}-x-2}$ is
(A) $\quad-2$
(B) $-\frac{1}{4}$
(C) 1
(D) 2
(E) nonexistent
7. $\lim _{x \rightarrow-\infty} \frac{5 x^{3}+27}{20 x^{2}+10 x+9}$ is
(A) $-\infty$
(B) -1
(C) 0
(D) 3
(E) ∞
8. $\lim _{x \rightarrow \infty} \frac{3 x^{2}+27}{x^{3}-27}$ is
(A) 3
(B) ∞
(C) 1
(D) -1
(E) 0
9. $\lim _{x \rightarrow \infty} \frac{2^{-x}}{2^{x}}$ is
(A) -1
(B) 1
(C) 0
(D) ∞
(E) none of these
10. $\lim _{x \rightarrow-\infty} \frac{2^{-x}}{2^{x}}$ is
(A) -1
(B) 1
(C) 0
(D) ∞
(E) none of these
11. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}$
(A) $=0$
(B) $=\frac{1}{5}$
(C) $=1$
(D) $=5$
(E) does not exist
12. $\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x}$.
(A) $=0$
(B) $=\frac{2}{3}$
(C) $=1$
(D) $=\frac{3}{2}$
(E) does not exist
13. The graph of $y=\arctan x$ has
(A) vertical asymptotes at $x=0$ and $x=\pi$
(B) horizontal asymptotes at $y= \pm \frac{\pi}{2}$
(C) horizontal asymptotes at $y=0$ and $y=\pi$
(D) vertical asymptotes at $x= \pm \frac{\pi}{2}$
(E) none of these
14. The graph of $y=\frac{x^{2}-9}{3 x-9}$ has
(A) a vertical asymptote at $x=3$
(B) a horizontal asymptote at $y=\frac{1}{3}$
(C) a removable discontinuity at $x=3$
(D) an infinite discontinuity at $x=3$
(E) none of these
15. $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}+3 x}$ is
(A) 1
(B) $\frac{1}{3}$
(C) 3
(D) ∞
(E) $\frac{1}{4}$
16. $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ is
(A) ∞
(B) 1
(C) nonexistent
(D) -1
(E) none of these
17. Which statement is true about the curve $y=\frac{2 x^{2}+4}{2+7 x-4 x^{2}}$?
(A) The line $x=-\frac{1}{4}$ is a vertical asymptote.
(B) The line $x=1$ is a vertical asymptote.
(C) The line $y=-\frac{1}{4}$ is a horizontal asymptote.
(D) The graph has no vertical or horizontal asymptote.
(E) The line $y=2$ is a horizontal asymptote.
18. $\lim _{x \rightarrow \infty} \frac{2 x^{2}+1}{(2-x)(2+x)}$ is
(A) -4
(B) $\quad-2$
(C) 1
(D) 2
(E) nonexistent
19. $\lim _{x \rightarrow 0} \frac{|x|}{x}$ is
(A) 0
(B) nonexistent
(C) 1
(D) -1
(E) none of these
20. $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$ is
(A) 0
(B) ∞
(C) nonexistent
(D) -1
(E) 1
21. $\lim _{x \rightarrow \pi} \frac{\sin (\pi-x)}{\pi-x}$ is
(A) 1
(B) 0
(C) ∞
(D) nonexistent
(E) none of these
22. Let $f(x)= \begin{cases}\frac{x^{2}-1}{x-1} & \text { if } x \neq 1 \\ 4 & \text { if } x=1 .\end{cases}$

Which of the following statements is (are) true?
I. $\lim _{x \rightarrow 1} f(x)$ exists
II. $f(1)$ exists
III. f is continuous at $x=1$
(A) I only
(B) II only
(C) I and II
(D) none of them
(E) all of them
23. If $\left\{\begin{array}{l}f(x)=\frac{x^{2}-x}{2 x} \text { for } x \neq 0, \\ f(0)=k,\end{array}\right.$ and if f is continuous at $x=0$, then $k=$
(A) -1
(B) $-\frac{1}{2}$
(C) 0
(D) $\frac{1}{2}$
(E) 1
24. Suppose $\left\{\begin{array}{l}f(x)=\frac{3 x(x-1)}{x^{2}-3 x+2} \text { for } x \neq 1,2, \\ f(1)=-3, \\ f(2)=4 .\end{array}\right.$

Then $f(x)$ is continuous
(A) except at $x=1$
(B) except at $x=2$
(C) except at $x=1$ or 2
(D) except at $x=0,1$, or 2
(E) at each real number
25. The graph of $f(x)=\frac{4}{x^{2}-1}$ has
(A) one vertical asymptote, at $x=1$
(B) the y-axis as vertical asymptote
(C) the x-axis as horizontal asymptote and $x= \pm 1$ as vertical asymptotes
(D) two vertical asymptotes, at $x= \pm 1$, but no horizontal asymptote
(E) no asymptote
26. The graph of $y=\frac{2 x^{2}+2 x+3}{4 x^{2}-4 x}$ has
(A) a horizontal asymptote at $y=+\frac{1}{2}$ but no vertical asymptote
(B) no horizontal asymptote but two vertical asymptotes, at $x=0$ and $x=1$
(C) a horizontal asymptote at $y=\frac{1}{2}$ and two vertical asymptotes, at $x=0$ and $x=1$
(D) a horizontal asymptote at $x=2$ but no vertical asymptote
(E) a horizontal asymptote at $y=\frac{1}{2}$ and two vertical asymptotes, at $x= \pm 1$
27. Let $f(x)=\left\{\begin{array}{ll}\frac{x^{2}+x}{x}- & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array}\right.$.

Which of the following statements is (are) true?
I. $f(0)$ exists
II. $\lim _{x \rightarrow 0} f(x)$ exists
III. f is continuous at $x=0$
(A) I only
(B) II only
(C) I and II only
(D) all of them
(E) none of them

Part B. Directions: Some of the following questions require the use of a graphing calculator.
28. If $[x]$ is the greatest integer not greater than x, then $\lim _{x \rightarrow / 2}[x]$ is
(A) $\frac{1}{2}$
(B) 1
(C) nonexistent
(D) 0
(E) none of these
29. (With the same notation) $\lim _{x \rightarrow-2}[x]$ is
(A) -3
(B) -2
(C) -1
(D) 0
(E) none of these
30. $\lim _{x \rightarrow \infty} \sin x$
(A) is -1
(B) is infinity
(C) oscillates between -1 and 1
(D) is zero
(E) does not exist
31. The function $f(x)= \begin{cases}x^{2} / x & (x \neq 0) \\ 0 & (x=0)\end{cases}$
(A) is continuous everywhere
(B) is continuous except at $x=0$
(C) has a removable discontinuity at $x=0$
(D) has an infinite discontinuity at $x=0$
(E) has $x=0$ as a vertical asymptote

Questions 32-36 are based on the function f shown in the graph and defined below:

$$
f(x)=\left\{\begin{array}{lr}
1-x & (-1 \leqslant x<0) \\
2 x^{2}-2 & (0 \leqslant x \leqslant 1) \\
-x+2 & (1<x<2) \\
1 & (x=2) \\
2 x-4 & (2<x \leqslant 3)
\end{array} .\right.
$$

32. $\lim _{x \rightarrow 2} f(x)$
(A) equals 0
(B) equals 1
(C) equals 2
(D) does not exist
(E) none of these
33. The function f is defined on $[-1,3]$
(A) if $x \neq 0$
(B) if $x \neq 1$
(C) if $x \neq 2$
(D) if $x \neq 3$
(E) at each x in $[-1,3]$
34. The function f has a removable discontinuity at
(A) $x=0$
(B) $x=1$
(C) $x=2$
(D) $x=3$
(E) none of these
35. On which of the following intervals is f continuous?
(A) $-1 \leqslant x \leqslant 0$
(B) $0<x<1$
(C) $1 \leqslant x \leqslant 2$
(D) $2 \leqslant x \leqslant 3$
(E) none of these
36. The function f has a jump discontinuity at
(A) $x=-1$
(B) $x=1$
(C) $x=2$
(D) $x=3$
(E) none of these
37. $\lim _{x \rightarrow 0} \sqrt{3+\arctan \frac{1}{x}}$ is
(A) $-\infty$
(B) $\sqrt{3-\frac{\pi}{2}}$
(C) $\sqrt{3+\frac{\pi}{2}}$.
(D) ∞
(E) none of these
38. Suppose $\lim _{x \rightarrow-3^{-3}} f(x)=-1, \lim _{x \rightarrow-3^{-3}} f(x)=-1$, and $f(-3)$ is not defined. Which of the following statements is (are) true?
I. $\lim _{x \rightarrow-3} f(x)=-1$.
II. f is continuous everywhere except at $x=-3$.
III. f has a removable discontinuity at $x=-3$.
(A) None of them
(B) I only
(C) III only
(D) I and III only
(E) All of them
39. If $y=\frac{1}{2+10^{\frac{1}{x}}}$, then $\lim _{x \rightarrow 0} y$ is
(A) 0
(B) $\frac{1}{12}$
(C) $\frac{1}{2}$
(D) $\frac{1}{3}$
(E) nonexistent

Questions 40-42 are based on the function f shown in the graph.

40. For what value(s) of a is it true that $\lim _{x \rightarrow a} f(x)$ exists and $f(a)$ exists, but $\lim _{x \rightarrow a} f(x) \neq f(a)$? It is possible that $a=$
(A) - 1 only
(B) 1 only
(C) 2 only
(D) - 1 or 1 only
(E) - 1 or 2 only
41. $\lim _{x \rightarrow a} f(x)$ does not exist for $a=$
(A) - 1 only
(B) 1 only
(C) 2 only
(D) 1 and 2 only
(E) $-1,1$, and 2
42. Which statements about limits at $x=1$ are true?
I. $\lim _{x \rightarrow 1} f(x)$ exists.
II. $\lim _{x \rightarrow 1^{+}} f(x)$ exists.
III. $\lim _{x \rightarrow 1} f(x)$ exists.
(A) none of I, II, or III
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III

Answer Key

1.	B	$\mathbf{1 2 .}$	B	23.	B	34.	C
2.	D	13.	B	24.	B	35.	B
3.	C	14.	C	25.	C	36.	B
4.	A	15.	B	26.	C	37.	E
5.	D	16.	C	27.	D	38.	D
6.	B	$\mathbf{1 7 .}$	A	28.	D	39.	E
7.	A	18.	B	29.	E	40.	A
8.	E	19.	B	30.	E	41.	B
9.	C	20.	E	31.	A	42.	D
10.	D	21.	A	32.	A		
11.	D	22.	C	33.	E		

Answers Explained

1. (B) The limit as $x \rightarrow 2$ is $0 \div 8$.
2. (D) Use the Rational Function Theorem (page 96). The degrees of $P(x)$ and $Q(x)$ are the same.
3. (C) Remove the common factor $x-3$ from numerator and denominator.
4. (A) The fraction equals 1 for all nonzero x.
5. (D) Note that $\frac{x^{3}-8}{x^{2}-4}=\frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)(x+2)}$.
6. (B) Use the Rational Function Theorem.
7. (A) Use the Rational Function Theorem.
8. (E) Use the Rational Function Theorem.
9. (C) The fraction is equivalent to $\frac{1}{2^{2 x}}$; the denominator approaches ∞.
10. (D) Since $\frac{2^{-x}}{2^{x}}=2^{-2 x}$, therefore, as $x \rightarrow-\infty$, the fraction $\rightarrow+\infty$.
11. (D) $\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=\lim _{x \rightarrow 0} \frac{\sin 5 x}{x} \cdot \frac{5}{5}=5 \lim _{x \rightarrow 0} \frac{\sin 5 x}{5 x}=5$
12. (B) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{3 x}=\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin 2 x}{x} \cdot \frac{2}{2}=\frac{2}{3} \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}=\frac{2}{3}$
13. (B) Because the graph of $y=\tan x$ has vertical asymptotes at $x= \pm \frac{\pi}{2}$, the graph of the inverse function $y=\arctan x$ has horizontal asymptotes at $y= \pm \frac{\pi}{2}$.
14. (C) Since $\frac{x^{2}-9}{3 x-9}=\frac{(x-3)(x+3)}{3(x-3)}=\frac{x+3}{3}$ (provided $x \neq 3$), y can be defined to be equal to 2 at $x=3$, removing the discontinuity at that point.
15. (B) Note that $\frac{\sin x}{x^{2}+3 x}=\frac{\sin x}{x(x+3)}=\frac{\sin x}{x} \cdot \frac{1}{x+3} \rightarrow 1 \cdot \frac{1}{3}$.
16. (C) As $x \rightarrow 0, \frac{1}{x}$ takes on varying finite values as it increases. Since the sine function repeats, $\sin \frac{1}{x}$ oscillates, taking on, infinitely many times, each value between -1 and 1 . The calculator graph of $Y_{1}=\sin (1 / X)$ exhibits this oscillating discontinuity at $x=0$.
17. (A) Note that, since $y=\frac{2 x^{2}+4}{(2-x)(1+4 x)}$, both $x=2$ and $x=-\frac{1}{4}$ are vertical asymptotes. Also, $y=-\frac{1}{2}$ is a horizontal asymptote.
18. (B) $\frac{2 x^{2}+1}{(2-x)(2+x)}=\frac{2 x^{2}+1}{4-x^{2}}$. Use the Rational Function Theorem (page 96).
19. (B) Since $|x|=x$ if $x>0$ but equals $-x$ if $x<0, \lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=1$ while $\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1$.
20. (E) Note that $x \sin \frac{1}{x}$ can be rewritten as $\frac{\sin \frac{1}{x}}{\frac{1}{x}}$ and that, as $x \rightarrow \infty, \frac{1}{x} \rightarrow 0$.
21. (A) As $x \rightarrow \pi,(\pi-x) \rightarrow 0$.
22. (C) Since $f(x)=x+1$ if $x \neq 1, \lim _{x \rightarrow 1} f(x)$ exists (and is equal to 2).
23. (B) $f(x)=\frac{x(x-1)}{2 x}=\frac{x-1}{2}$, for all $x \neq 0$. For f to be continuous at $x=0, \lim _{x \rightarrow 0} f(x)$ must equal $f(0) . \lim _{x \rightarrow 0} f(x)=-\frac{1}{2}$.
24. (B) Only $x=1$ and $x=2$ need be checked. Since $f(x)=\frac{3 x}{x-2}$ for $x \neq 1,2$, and $\lim _{x \rightarrow 1} f(x)=-3=f(1), f$ is continuous at $x=1$. Since $\lim _{x \rightarrow 2} f(x)$ does not exist, f is not continuous at $x=2$.
25. (C) As $x \rightarrow \pm \infty, y=f(x) \rightarrow 0$, so the x-axis is a horizontal asymptote. Also, as $x \rightarrow \pm 1, y \rightarrow \infty$, so $x= \pm 1$ are vertical asymptotes.
26. (C) As $x \rightarrow \infty, y \rightarrow \frac{1}{2}$; the denominator (but not the numerator) of y equals 0 at $x=0$ and at $x=1$.
27. (D) The function is defined at 0 to be 1 , which is also $\lim _{x \rightarrow 0} \frac{x^{2}+x}{x}=\lim _{x \rightarrow 0}(x+1)$.
28. (D) See Figure N2-1 on page 88.
29. (E) Note, from Figure N2-1, that $\lim _{x \rightarrow-2^{-}}[x]=-3$ but $\lim _{x \rightarrow-2^{+}}[x]=-2$.
30. (E) As $x \rightarrow \infty$, the function $\sin x$ oscillates between -1 and 1 ; hence the limit does not exist.
31. (A) Note that $\frac{x^{2}}{x}=x$ if $x \neq 0$ and that $\lim _{x \rightarrow 0} f=0$.
32. (A) $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=0$.
33. (E) Verify that f is defined at $x=0,1,2$, and 3 (as well as at all other points in $[-1,3])$.
34. (C) Note that $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=0$. However, $f(2)=1$. Redefining $f(2)$ as 0 removes the discontinuity.
35. (B) The function is not continuous at $x=0,1$, or 2 .
36. (B) $\lim _{x \rightarrow 1^{-}} f(x)=0 \neq \lim _{x \rightarrow 1^{+}} f(x)=1$.
37. (E) As $x \rightarrow 0^{-}, \arctan \frac{1}{x} \rightarrow-\frac{\pi}{2}$, so $y \rightarrow \sqrt{3-\frac{\pi}{2}}$. As $x \rightarrow 0^{+}, y \rightarrow \sqrt{3+\frac{\pi}{2}}$. The graph has a jump discontinuity at $x=0$. (Verify with a calculator.)
38. (D) No information is given about the domain of f except in the neighborhood of $x=-3$.
39. (E) As $x \rightarrow 0^{+}, 10^{\frac{1}{x}} \rightarrow \infty$ and therefore $y \rightarrow 0$. As $x \rightarrow 0^{-}, \frac{1}{x} \rightarrow-\infty$, so $10^{\frac{1}{x}} \rightarrow 0$ and therefore $y \rightarrow \frac{1}{2}$. Because the two one-sided limits are not equal, the limit does not exist. (Verify with a calculator.)
40. (A) $\lim _{x \rightarrow-1} f(x)=1$, but $f(-1)=2$. The limit does not exist at $a=1$ and $f(2)$ does not exist.
41. (B) $\lim _{x \rightarrow-1} f(x)=1$ and $\lim _{x \rightarrow 2} f(x)=2$.
42. (D) $\lim _{x \rightarrow 1^{-}} f(x)=-1$ and $\lim _{x \rightarrow l^{+}} f(x)=1$, but since these two limits are not the same, $\lim _{x \rightarrow 1} f(x)$ does not exist.
