\qquad

1) Let f be a function defined on the closed interval $-5 \leq x \leq 10$ with $f(2)=15$. The graph of f^{\prime}, the derivative of f, is shown above.
a) On what intervals, if any, is f increasing? Justify your answer.
$b)$ On what intervals, if any, is f concave up? Justify your answer.
c) Find the x-coordinate of each point of rel. max. of the graph of f on the open interval $-5<x<10$. Justify your answer.
d) Find an equation for the line tangent to the graph of f at the point $(6,27)$.
$e)$ Find $f(-5)$ and $f(10)$. Show the work that leads to your answers.
f) Find the absolute maximum and minimum value from $[-5,10]$. Justify your answer.

2) The graph of a function f consists of a semicircle and two line segments as shown above.

Let g be the function given by $g(x)=\int_{0}^{x} f(t) d t$.
a) Find each:
$g(3)=$
$g(-3)=$
$g(4)=$
$g(6)=$
b) Find each: $g^{\prime}(4)=$

$$
\begin{aligned}
& g^{\prime}(5)= \\
& g^{\prime \prime}(5)=
\end{aligned}
$$

c) Write an equation for the line tangent to the graph of g at $x=4$.
d) For what values of x in the open interval $(-3,6)$ is the graph of g concave down? Explain your reasoning.
$e)$ Find the x-coordinate of each point of inflection of the graph of g on the open interval $(-3,6)$. Justify your answer.
3) If the velocity of the particle is 100 at $t=3$ and the acceleration of the particle is $a(t)=11 \sin t$, find the velocity of the particle at $t=7$.
4) If $f(6)=50$

Find $f(0)=$

