AP CALCULUS PROBLEM SETS 10 ANSWER KEY INTEGRATION RATES AND MODELLING

1. a) $G^{\prime}(5)=-24.588$ The rate at which gravel is arriving is decreasing by 24.588 tons per hour at time $t=5$ hours.
b) 825.551 tons
c) $G(5)=98.140764<100$ The rate at which gravel is arriving is less than the rate at which it is being processed. Therefore the amount of unprocessed gravel is decreasing at time $t=5$.
d) 635.376 tons/hour
2. a) 6004
b) $\$ 104041, \$ 104048$
c) $H^{\prime}(17)=-380.281$.

There were 3725 people in the park at $t=17$, and the number was decreasing at 380 people/hr.
d) $t=15.794$
6. a) 8264 gal.
b) decreasing on $[0,1.617]$ and $[3,5.076]$
c) abs. max at 3 hours, 5127 gal.
7. a) $142.274 \mathrm{ft}^{3}$
b) $-59.582 \mathrm{ft}^{3} / \mathrm{hr}$
c) $h(t)= \begin{cases}0, & 0 \leq t \leq 6 \\ 125(t-6), & 6<t \leq 7 \\ 125+108(t-7), & 7<t \leq 9\end{cases}$
d) $26.334 \mathrm{ft}^{3}$
8. b) $T_{\text {avg }}=87^{\circ}$
c) $5.2309 \leq T \leq 18.7691$
d) $\$ 5.10$
9. a) $\frac{d h}{d t}=0.038 \mathrm{~cm} / \mathrm{min}$
b) Max. volume at $t=25 \mathrm{~min}$.
c) $V(25)=60000+\int_{0}^{25}(2000-R(t)) d t$
3. a) 258.6 gallons
b) yes - Mean Value Theorem
c) 10.785 gallons $/ \mathrm{hr}$
10. a) $\frac{14}{3}$ gallons
b) $\frac{148}{3}$ gallons
c) $A(t)=30+8 t-\int_{0}^{t} \sqrt{x+1} d x$ or $8 t-\frac{2}{3}(t+1)^{3 / 2}+\frac{92}{3}$
d) $t=63$ minutes
5. a) $31.815 \mathrm{yd}^{3}$
b) $Y(t)=2500+\int_{0}^{t}((S(x)-R(x)) d x$
c) $Y^{\prime}(4)=-1.909 \mathrm{yd}^{3} / \mathrm{min}$
d) \min at $t=5.117$ is $2492.369 \mathrm{yd}^{3}$
11. a) 3200 people
b) increasing
c) longest line at $t=3,1500$ people
d) $0=700+\int_{0}^{t} r(s) d s-800 t$

