AP CALCULUS PROBLEM SETS 10 ANSWER KEY INTEGRATION RATES AND MODELLING

- 1. a) G'(5) = -24.588 The rate at which gravel is arriving is decreasing by 24.588 tons per hour at time t = 5hours.
 - b) 825.551 tons
 - c) G(5) = 98.140764 < 100 The rate at which gravel is arriving is less than the rate at which it is being processed. Therefore the amount of unprocessed gravel is decreasing at time t = 5.
 - d) 635.376 tons/hour
- 2. a) 6004
 - b) \$104 041, \$104 048
 - c) H'(17) = -380.281. There were 3725 people in the park at t = 17, and the number was decreasing at 380 people/hr.
 d) t = 15.794
- 3. a) 258.6 gallons
 - b) yes Mean Value Theorem
 - c) 10.785 gallons/hr
- 4. a) 2474 cars
 - b) F'(7) = -1.872, decreasing
 - c) 81.899 cars/min
 - d) 1.517 cars/min²

5. a) 31.815 yd³

b)
$$Y(t) = 2500 + \int_0^t ((S(x) - R(x))dx)$$

c) $Y'(4) = -1.909 \text{ yd}^3/\text{min}$
d) min at $t = 5.117$ is 2492.369 yd³

- 6. a) 8264 gal.
 - b) decreasing on [0, 1.617] and [3, 5.076]
 - c) abs. max at 3 hours, 5127 gal.
- 7. a) 142.274 ft³

b) -59.582 ft³/hr
c)
$$h(t) = \begin{cases} 0, & 0 \le t \le 6\\ 125(t-6), & 6 < t \le 7\\ 125+108(t-7), & 7 < t \le 9 \end{cases}$$

d) 26.334 ft³

8. b)
$$T_{avg} = 87^{\circ}$$

c) $5.2309 \le T \le 18.7691$
d) $$5.10$

9. a)
$$\frac{dh}{dt} = 0.038$$
 cm/min
b) Max. volume at $t = 25$ min.
c) $V(25) = 60000 + \int_0^{25} (2000 - R(t)) dt$

10. a)
$$\frac{14}{3}$$
 gallons
b) $\frac{148}{3}$ gallons
c) $A(t) = 30 + 8t - \int_0^t \sqrt{x+1} dx$
or $8t - \frac{2}{3}(t+1)^{3/2} + \frac{92}{3}$

d) t = 63 minutes

11. a) 3200 people

- b) increasing
- c) longest line at t = 3, 1500 people
- d) $0 = 700 + \int_0^t r(s)ds 800t$