1. a) Inflection points at $x=-2$ and $x=0$
b) $f(-4)=5+\int_{0}^{-4} g(x) d x=2 \pi-3$

$$
f(4)=5+\int_{0}^{4}\left(5 e^{-x / 3}-3\right) d x=8-15 e^{-4 / 3}
$$

c) $g(3)=5+\int_{0}^{3} g^{\prime}(x) d x=\frac{13}{2}+\pi$
$f(-2)=5+\int_{0}^{-2} g^{\prime}(x) d x=5-\pi$
2. a) $g(3)=5+\int_{0}^{3} g^{\prime}(x) d x=\frac{13}{2}+\pi$

$$
f(-2)=5+\int_{0}^{-2} g^{\prime}(x) d x=5-\pi
$$

b) Inflection points at $x=0,2$ and 3
c) $h^{\prime}(x)=g^{\prime}(x)-x$ when $x=\sqrt{2}$ and $x=3$ h has a relative max at $x=\sqrt{2}$, and neither a maximum nor minimum at $x=3$
3. a) Relative maximum at $x=2$

c) $g^{\prime}(x)=f(x)=0$ at $x=1,3$
g has rel. min. at $x=1$,
rel. max. at $x=3$
d) g has an inflection point at $x=2$.
4. a) $g(0)=4.5, g^{\prime}(0)=1$
b) g has rel. max. at $x=3$
c) g has abs. min. at $x=-4, g=-1$
d) $x=-3,1,2$
5. a) f is increasing on $[-3,-2]$
b) $x=0$ and $x=2$
c) $y=-2 x+3$
d) $f(-3)=9 / 2, \quad f(4)=-5+2 \pi$
6. a) $6 \pi^{2}-\left[2 \sin \left(\frac{x}{2}\right)\right]_{x=-2 \pi}^{x=4 \pi}=6 \pi^{2}$
b) $\quad f^{\prime}(x)=g^{\prime}(x)+\frac{1}{2} \sin \left(\frac{x}{2}\right)$

$$
=\left\{\begin{array}{l}
1+\frac{1}{2} \sin \left(\frac{x}{2}\right) \text { for }-2 \pi<x<0 \\
-\frac{1}{2}+\frac{1}{2} \sin \left(\frac{x}{2}\right) \text { for } 0<x<4 \pi
\end{array}\right.
$$

$f^{\prime}(x)$ does not exist at $x=0$.
For $-2 \pi<x<0, f^{\prime}(x) \neq 0$.
For $0<x<4 \pi, f^{\prime}(x)=0$ when $x=\pi$. f has critical points at $x=0$ and $x=\pi$.
c) $\quad h^{\prime}(x)=g(3 x) \cdot 3$

$$
h^{\prime}\left(-\frac{\pi}{3}\right)=3 g(-\pi)=3 \pi
$$

7. a) $g(4)=3, g^{\prime}(4)=0, g^{\prime \prime}(4)=-2$
b) g has rel. min. at $x=-1$
c) at $x=108, y-44=2(x-108)$
8. a) $g(-1)=-1.5, g^{\prime}(-1)=0, g^{\prime \prime}(-1)=3$
b) g is increasing on $-1<x<1$ since $g^{\prime}(x)=f(x)>0$
c) g is concave down on $0<x<2$ since $g^{\prime \prime}(x)=f^{\prime}(x)<0$
d)

9. a) i) $5 x^{3}+40=\int_{c}^{x} f(t) d t$

$$
15 x^{2}=f(x) \therefore f(t)=15 t^{2}
$$

ii) $\left.5 x^{3}+40=\int_{c}^{x} 15 t^{2} d t=5 t^{3}\right]_{c}^{x}=5 x^{3}-5 c^{3}$

$$
c=-2
$$

b) $\quad F(x)=\int_{x}^{3} \sqrt{1+t^{16}} d t=-\int_{3}^{x} \sqrt{1+t^{16}} d t$

$$
F^{\prime}(x)=-\sqrt{1+x^{16}}
$$

11. a) f has rel. min. at $x=1$
b) f^{\prime} is differentiable and therefore continuous on $-1 \leq x \leq 1$
c) $h^{\prime}(3)=\frac{1}{f(3)} f^{\prime}(3)=\left(\frac{1}{7}\right)\left(\frac{1}{2}\right)=\frac{1}{14}$
d) $\int_{-2}^{3} f^{\prime}(g(x)) g^{\prime}(x) d x$
$=[f(g(x))]_{x=-2}^{x=3}=[f(g(3))]-[f(g(-2))]$
$=f(1)-f(-1)=2-8$
$=-6$
12. a) $0 \leq\left(\frac{x}{2}+3\right) \leq 5$
$-6 \leq x \leq 4$
b) $h^{\prime}(x)=f\left(\frac{x}{2}+3\right)\left(\frac{1}{2}\right)$

$$
h^{\prime}(2)=f(4)\left(\frac{1}{2}\right)=-\frac{3}{2}
$$

c) $h(-6)=\int_{0}^{0} f(t) d t=0$
$h(4)=\int_{0}^{5} f(t) d t<0$
Since area below x axis is greater than the area above, min @ $x=4$.

