1. a) Inflection points at x = -2 and x = 0b) $f(-4) = 5 + \int_0^{-4} g(x) dx = 2\pi - 3$ $f(4) = 5 + \int_0^4 (5e^{-x/3} - 3) dx = 8 - 15e^{-4/3}$ c) $g(3) = 5 + \int_0^3 g'(x) dx = \frac{13}{2} + \pi$ $f(-2) = 5 + \int_0^{-2} g'(x) dx = 5 - \pi$

2. a)
$$g(3) = 5 + \int_0^3 g'(x) dx = \frac{13}{2} + \pi$$

 $f(-2) = 5 + \int_0^{-2} g'(x) dx = 5 - \pi$

- b) Inflection points at x = 0, 2 and 3
- c) h'(x) = g'(x) x when $x = \sqrt{2}$ and x = 3 *h* has a relative max at $x = \sqrt{2}$, and neither a maximum nor minimum at x = 3
- 3. a) Relative maximum at x = 2

d) g has an inflection point at x = 2.

4. a) g(0) = 4.5, g'(0) = 1
b) g has rel. max. at x = 3
c) g has abs. min. at x = -4, g = -1
d) x = -3, 1, 2

6. a)
$$6\pi^2 - \left[2\sin\left(\frac{x}{2}\right)\right]_{x=-2\pi}^{x=4\pi} = 6\pi^2$$

b) $f'(x) = g'(x) + \frac{1}{2}\sin\left(\frac{x}{2}\right)$
 $= \begin{cases} 1 + \frac{1}{2}\sin\left(\frac{x}{2}\right) \text{ for } -2\pi < x < 0 \\ -\frac{1}{2} + \frac{1}{2}\sin\left(\frac{x}{2}\right) \text{ for } 0 < x < 4\pi \end{cases}$
 $f'(x)$ does not exist at $x = 0$.
For $-2\pi < x < 0$, $f'(x) \neq 0$.
For $0 < x < 4\pi$, $f'(x) = 0$ when $x = \pi$.
 f has critical points at $x = 0$ and $x = \pi$.

c)
$$h'(x) = g(3x) \cdot 3$$

 $h'\left(-\frac{\pi}{3}\right) = 3g(-\pi) = 3\pi$

7. a) g(4) = 3, g'(4) = 0, g"(4) = -2
b) g has rel. min. at x = -1
c) at x = 108, y - 44 = 2(x - 108)

8. a)
$$g(-1) = -1.5$$
, $g'(-1) = 0$, $g''(-1) = 3$

- b) g is increasing on -1 < x < 1 since g'(x) = f(x) > 0
- c) g is concave down on 0 < x < 2 since g''(x) = f'(x) < 0

- 11. a) f has rel. min. at x = 1
 - b) f' is differentiable and therefore continuous
 on -1≤x≤1
 c) h'(3) = ¹ f'(3) = ⁽¹⁾(1) = ¹

c)
$$h(3) = \frac{1}{f(3)} f'(3) = \left(\frac{1}{7}\right) \left(\frac{1}{2}\right) = \frac{1}{14}$$

d) $\int_{-2}^{3} f'(g(x))g'(x)dx$
 $= [f(g(x))]_{x=-2}^{x=3} = [f(g(3))] - [f(g(-2))]$
 $= f(1) - f(-1) = 2 - 8$
 $= -6$

9. a) i)
$$5x^3 + 40 = \int_c^x f(t)dt$$

 $15x^2 = f(x) \therefore f(t) = 15t^2$
ii) $5x^3 + 40 = \int_c^x 15t^2dt = 5t^3 \int_c^x = 5x^3 - 5c^3$
 $c = -2$
b) $F(x) = \int_x^3 \sqrt{1 + t^{16}} dt = -\int_3^x \sqrt{1 + t^{16}} dt$
 $F'(x) = -\sqrt{1 + x^{16}}$

10. a)
$$0 \le \left(\frac{x}{2} + 3\right) \le 5$$

 $-6 \le x \le 4$
b) $h'(x) = f\left(\frac{x}{2} + 3\right)\left(\frac{1}{2}\right)$
 $h'(2) = f(4)\left(\frac{1}{2}\right) = -\frac{3}{2}$
a) $h(-6) = \int_{-6}^{0} f(t) dt = 0$

c)
$$h(-6) = \int_0^0 f(t)dt = 0$$

 $h(4) = \int_0^5 f(t)dt < 0$

Since area below *x* axis is greater than the area above, min @x = 4.