AP CALCULUS PROBLEM SET \#5 MOTION ANSWER KEY

1. a) $x(t)=t^{3}-t^{2}-t+3$
b) $t=1.786$
c) 17
2. a) $a(0)=-4$
b) $v(2)=\frac{-2}{e^{2}}$
c) $\frac{4 e^{4}-10}{e^{5}}$
3. a) $3<t<9$
b) $\int_{0}^{6}|v(t)| d t$
c) $a(4)=-\frac{\sqrt{3} \pi}{12}$

Speed is increasing at $t=4$ because velocity and acceleration are both negative

$$
\text { d) } \begin{aligned}
x(4) & =-2+\int_{0}^{4} \cos \left(\frac{\pi}{6} t\right) d t \\
& =-2+\left[\frac{6}{\pi} \sin \left(\frac{\pi}{6} t\right)\right]_{0}^{4} \\
& =-2+\frac{3 \sqrt{3}}{\pi}
\end{aligned}
$$

4. a) $0<t<1$ and $3<t<6$
b) $0<t<1$ and $3<t<4$
c) $v=\left.\frac{d p}{d t}\right|_{t=3}<0$

$$
a=\left.\frac{d^{2} p}{d t^{2}}\right|_{t=3}=\frac{\pi^{2}}{8 \sqrt{2}}>0
$$

Particle is slowing down at time $t=3$
d) $\frac{1}{2} \int_{1}^{3}|p(t)-r(t)| d t$
5. a) Particle is furthest to the left at $t=3$ when its position is $x(3)=-10$
b) There are 3 values of t for which the particle is at $x(3)=8$
c) Speed is decreasing on the interval
$(2,3)$ since $v<0$ and $\frac{d v}{d t}>0$
d) Acceleration is negative on the intervals $(0,1)$ and $(4,6)$ since $\frac{d v}{d t}<0$
6. a) A: $\frac{20}{3} \mathrm{~m} / \mathrm{s} \quad$ B: $\frac{48}{7} \mathrm{~m} / \mathrm{s}$
b) $A: \frac{10}{3} \mathrm{~m} / \mathrm{s}^{2}$

B: $\frac{72}{49} \mathrm{~m} / \mathrm{s}^{2}$
c) $\mathrm{A}: 85 \mathrm{~m}$

B: 83.336 m
7. a) yes, $a(2)=15$
b) $t=12$
c) $115 \mathrm{ft} / \mathrm{sec}$
d) velocity is never zero
8. a) up, $v(1.5)>0$
b) $a(1.5)=-2.048$
c) $y(2)=3.826$
d) 1.173
9. a) $t=1$ or $\frac{2}{3}$
b) $\frac{2}{3}<t<1$
c) $t=\frac{5}{6}$

10 a) Particle is furthest to the left when $t=\frac{5 \pi}{4}$
b) $A=\frac{1}{2}$

