Applications of Integrals

Brief Review

The application of Integrals we will focus on this week is area and volume.

AREA BETWEEN TWO CURVES:

You can do this with an x-axis orientation in which case your limits of integration come from the x-axis and you do TOP-BOTTOM.

y-axis orientation is RIGHT-LEFT and your limits come from y. Your functions must be solve for x in terms of y.

VOLUME BY DISKS:

$$\pi \int_a^b \bigl(R(x)\bigr)^2 dx$$

VOLUME BY WASHERS:

$$\pi \int_a^b (R(x))^2 - (r(x))^2 dx$$

VOLUME BY KNOWN CROSS SECTIONS:

Must know volume formulas for square, rectangle, equilateral triangle, and right isosceles triangle

AVERAGE VALUE:

$$\frac{1}{b-a}\int_a^b f(x)\ dx$$

2008 Exam Non-Calculator

9. The graph of the piecewise linear function f is shown in the figure above. If

 $g(\tau) = \int_{-2}^{2} f(t) dt$, which of the following values is greatest? $e^{-t} g(t) dt$, which of the following values is greatest? $e^{-t} g(t) dt$

- 10. The graph of function f is shown above for $0 \le x \le 3$. Of the following, which has the least value?
 - (A) \int_3 f(x) & Exact area
 - (B) Left Riemann sum approximation of $\int_1^3 f(x)dx$ with 4 subintervals of equal length

Indexes timat

(C) Right Riemann sum approximation of $\int_1^3 f(x)dx$ with 4 subintervals of equal length

(D) Midpoint Riemann sum approximation of $\int_1^3 f(x)dx$ with 4 subintervals of equal length

(E) Trapezoidal sum approximation of $\int_1^3 f(x)dx$ with 4 subintervals of equal length

closer to the curre lexact area) than the lest or right

2008 Exam Calculator

- 79. If $\int_{-5}^{2} f(x) dx = -17$ and $\int_{5}^{2} f(x) dx = -4$, what is the value of $\int_{-5}^{5} f(x) dx$?

 - (A) -21 (B) -13
- (C) 0
- (D) 13

- 33. What is the area enclosed by the curves $y = x^3 8x^2 + 18x 5$ and y = x + 5?
 - (A) 10.667
 - (B) 11.833
 - (C) 14.583
 - (D) 21.333
 - (E) 32

- 5
 - 5 f (x) -g(x)dx + 5 g(x)-f(x) d+

- 91. What is the average value of $y = \frac{\cos x}{x^2 + x + 2}$ on the closed interval [-1, 3]?
 - (A) -0.085

- (D) 0.244
- (E) 0.732

this is the answer if you forget the it

- 92. A city located beside a river has a rectangular boundary as shown in the figure above. The population density of the city at any point along a strip x miles from the river's edge is f(x) persons per square mile. Which of the following expressions gives the population of the city?
 - (A) $\int_0^1 f(x) dx$
 - $(B) \int_0^4 f(x) dx$
 - (C) $28\int_0^4 f(x)dx$
 - (D) $\int_a^2 f(x) dx$
 - (E) $4\int_{0}^{2} f(x) dx$

2003 Exam Calculator

S5. If a trapezoidal sum overapproximates $\int f(x)dx$, and a right Riemann sum

underapproximates $\int f(x)dx$, which of the following could be the graph of y = f(x)? A Rt over approximate C) 5 D)

86. The base of a solid is the region in the first quadrant bounded by the y-axis. the graph of $y = \tan^{-1}(x)$, the horizontal line y=3, and the vertical line x=1. For this solid, each cross section perpendicular to the x-axis is a square. What is the volume of the solid?

\$8. On the closed interval [2,4], which of the following could be the graph of a function

I with the property that $\frac{1}{4-2}$ if (i) it = 1? $\angle \alpha$ We varie value is α

Applications of Integration: Open Ended Area and Volume Problems

2014 AP° CALCULUS AB FREE-RESPONSE

- 2. Let R be the region enclosed by the graph of $f(x) = x^4 2.3x^3 + 4$ and the horizontal line y = 4, as shown in the figure above.

(a) Find the volume of the solid generated when R is rotated about the horizontal line
$$y = -2$$
.

V= TT $\int_{0}^{2.3} \left[-2-4\right]^{2} - \left[-2-(x^{4}-2.3x^{3}+4)\right]^{2} dx$

Limits H 31.470 42627 or 93.867 or 98.867

(b) Region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an isosceles right triangle with a leg in R. Find the volume of the solid.

the triangle with a leg in R. Find the volume of the solid.

$$A = \frac{1}{2} \times \frac{2}{2}$$

$$= \frac{1}{2} \times \frac{2}{3} \times \frac{2}{3}$$

(c) The vertical line x = k divides R into two regions with equal areas. Write, but do not solve, an equation involving integral expressions whose solution gives the value k.

$$\int_{0}^{K} (4-f(\kappa))dx = \int_{K}^{2.13} (4-f(\kappa))dx + 1 = 0$$

2013 AP° CALCULUS AB FREE-RESPONSE QUESTIONS

5. Let $f(x) = 2x^2 - 6x + 4$ and $g(x) = 4\cos(\frac{1}{4}\pi x)$. Let R be the region bounded by the graphs of f and g, as shown in the figure above.

shown in the figure above.

(a) Find the area of R. $\int_{0}^{2} 4\cos(\frac{1}{4}\pi x) - (2x^{2}-6x+4) \cos x$ $\Rightarrow \frac{16}{11} \sin(\frac{1}{4}\pi x) - \frac{2}{3}x^{3} + 3x^{3} - 4x / x = 0$ Aside $\Rightarrow \frac{16}{11} \sin(\frac{1}{2}) - \frac{2}{3}(2)^{3} + 3(2)^{2} - 4(2) - \frac{16}{11} \sin(0^{2}-0)$ $\Rightarrow \frac{16}{11} \sin(\frac{1}{2}) - \frac{2}{3}(2)^{3} + 3(2)^{2} - 4(2) - \frac{16}{11} \sin(0^{2}-0)$ $\Rightarrow \frac{16}{11} \sin(\frac{1}{2}) - \frac{16}{3} \sin(\frac{1}{12} - \frac{1}{3}) + 12 - 8 - 0$ $\Rightarrow \frac{16}{11} \sin(\frac{1}{12} + \frac{1}{3}) + 12 - 8 - 0$ $\Rightarrow \frac{16}{11} \sin(\frac{1}{12} + \frac{1}{3}) + 12 - 8 - 0$ (b) Write, but do not evaluate, an integral expression that gives the volume of the solid generated when R is rotated about the horizontal line y = 4.

rotated about the horizontal line y = 4.

 $V = \pi \int_{0}^{2} (4 - (2x^{2} - 6x + 4))^{2} - (4 - 4\cos(4\pi x))^{2} dx$

(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Write, but do not evaluate, an integral expression that gives the volume of the solid.

2011 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

- 3. Let R be the region in the first quadrant enclosed by the graphs of $f(x) = 8x^3$ and $g(x) = \sin(\pi x)$, as shown in the figure above.
 - (a) Write an equation for the line tangent to the graph of f at $x = \frac{1}{2}$.

$$f'(x) = 24x^{2}$$

 $f'(x) = 24(2)^{2} = 6 = m$

$$f(x) = 8(2)^{2} = 6 = m$$

$$f(x) = 24(2)^{2} = 6 = m$$

$$f(x) = 8(2)^{2} = 6 = m$$

(b) Find the area of R.

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 8x^{3} dx = \frac{1}{\pi} \cos(\pi x) - 2x^{4} \Big|_{x=0}^{x=\frac{1}{2}}$$

$$\int_{0}^{1} \sin(\pi x) - 3x^{4} dx = \frac{1}{\pi} \cos(\pi x) - \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi} \cos(\pi x)$$

$$\int_{0}^{1} \sin(\pi x) dx = \frac{1}{\pi} \cos(\pi x) - \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi} \cos(\pi x)$$

$$\int_{0}^{1} \sin(\pi x) dx = \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi} \cos(\pi x)$$

$$\int_{0}^{1} \sin(\pi x) dx = \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi} \cos(\pi x)$$

$$\int_{0}^{1} \sin(\pi x) dx = \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi} \cos(\pi x)$$

$$\int_{0}^{1} \sin(\pi x) dx = \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi} \cos(\pi x)$$

$$\int_{0}^{1} \sin(\pi x) dx = \frac{1}{\pi} \cos(\pi x) + \frac{1}{\pi}$$

(c) Write, but do not evaluate, an integral expression for the volume of the solid generated when R is rotated about the horizontal line y = 1.

$$V = \pi \int_{0}^{\pi} (1 - 8x^{3})^{2} - (1 - 5in(\pi x))^{2} c! x$$